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Abstract. We show that for generic short-range classical lattice gas models the third law 
of thermodynamics holds-entropy goes to zero with temperature. 

The most fundamental aspect of low-temperature matter is its highly ordered (crystal- 
line) structure, which distinguishes it from the fluid state and is necessary for most of 
the characteristic features of solids. 

Attempts to discover the causes of this order constitute, in one way or another, 
one of the main themes of solid state physics (see [ 11) and have been, to date, largely 
unsuccessful. At the most basic level one models equilibrium matter by statistical 
mechanics, which means by a particle system in a configuration which minimises the 
free energy. It is expected that, at low temperature, in order to minimise the free 
energy one must in fact minimise the energy, and to minimise the energy the particle 
system must be in a highly ordered (crystalline) configuration. It is this last part of 
the conventional intuition, whereby low energy forces configurations to have crystalline 
order, that the main problem lies; there is not even the vaguest, most intuitive argument 
as to why or by what mechanism this forcing is supposed to take place. For an extensive 
review of this problem see [2]. 

A new line of development has opened in this ‘crystal problem’ (the attempt to 
understand why low-energy configurations must have crystalline order) in which the 
new feature is that the role of crystalline order is questioned. More specifically, using 
classical lattice gas models it has recently been proved [3,4] that for generic short-range 
interactions the ground state has long-range order but is not crystalline. (By long-range 
order we mean that two-particle correlation functions do not cluster, or intuitively that 
portions of the configuration in regions separated arbitrarily far apart are statistically 
dependent.) The main point of these papers is the strong suggestion that it is appropriate 
to aim at proving that low energy implies not crystalline order but only something 
weaker; for example long-range order. 

The aim of this paper is twofold. First we show that the special property of 
configurations used in [3], from which long-range order was proven to follow, is of 
more significance than was realised; from it also follows the vanishing of the entropy, 
a somewhat different measure of order. Second, the rest of [3] then implies that the 
third law of thermodynamics holds for generic interactions. 

The idea in [3] from which we start is the following. We call a configuration 
‘net-ordered’ if, given any E > 0, there are three linearly independent vectors d , ( s ) , j  = 
1,2,3, such that, except for a fraction of the configuration less than E ,  the configuration 
is locally invariant under translation by d , ( ~ ) .  This is a little vague; for lattice gas 
models we make the definition precise by replacing ‘the configuration is locally 
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invariant’ by ‘the state of the configuration at each site is invariant’. It is necessary at 
this point to make precise exactly what we mean by classical lattice gas models. 

In classical lattice gas models one considers a field, d, on the three-dimensional 
simple cubic lattice, Z‘ ,  with finitely niany possible values (let S denote the number) 
at each lattice site, each value interpreted as the occupation status of the site; one 
value is reserved to mean ‘empty’ and the others represent different internal states of 
a single particle. We will refer to a set of field variables for all sites of Z’ (or a subset 
if so indicated) as a ‘configuration’. By a ‘ground-state distribution’ we mean a limit, 
as temperature goes to zero, of the translation-invariant grand canonical probability 
distribution on the set of all configurations, and by a ‘ground-state configuration’ we 
mean any configuration in support of the ground-state distribution. 

Next we wish to prove some consequences that folollow when one knows that a 
configuration i s  net-ordered. To d o  this we restate the definition of a net-ordered 
configuration in terms of the restrictions of the configuration to large finite cubes of 
sites in Z 3 ,  as follows. A configuration is net-ordered if, given F > 0 and any cube A 
containing M N  sites and  with sides perpendicular to the coordinate directions, where 
M = 1 / &  and  N >> M, the restriction, y ,  of the configuration to A satisfies the following 
condition: except for X N of the sites of A the state at each site agrees with that at 
those three sites (assumed to be again in A )  at some distance (denoted r ( M ) )  along 
the three axes in the positive directions, e, .  (Intuitively, N measures the size of ll and 
E = 1 / M  is an  upper bound on the fraction of exceptional sites; the state at each of 
the other (non-exceptional) sites is invariant under translation in three directions by 
the ‘period’ r (  M ) . )  

In order to estimate the entropy of a model we will establish an  upper bound on 
how many such restrictions y are possible. Fix some y. In the above ‘condition’ call 
the X exceptional sites ‘bad’ and the remaining ones ‘good’. (The union of the good 
and bad sets is A, and so consists of M N  sites.) Define a ‘component’ to be a maximally 
connected set of good sites, i.e. a maximal set of good sites, any two of which can be 
connected by a sequence of steps, of the same fixed length r ( M )  parallel to any of 
the three axes, between sites in the set. Note that if s belongs to some component 
then either s + r ( M ) e ,  also belongs to that component, o r  it is a bad site. It follows 
then that for each component there is at least one bad site of the form s + r (  M ) e ,  for 
some site s in the component, which then implies that y has at most X components. 

We are interested in the number of possible configurations y on A which satisfy 
the condition. To get a n  upper bound first note, using the above, that there are at 
most S2x which have their bad sites in the same X places. Second, note that there 
are ( N M ) ! / [ X ! ( N M - X ) ! ]  ways to place the X bad sites in A. So the number of 
configurations is at most 

We will show next that 

From Stirling’s approximation, log(z!) = ( z  +i) log(z) - z + O( 1 )  where O( 1) stands 
for something bounded as Z + W .  So for fixed M, as N-.w we have 
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( N M ) !  
log(  [ (M - 1 ) N ] !  N !  

M M 
= NM log( -) +; log( -) + N log(M - 1 )  -4 log( N )  + o(1) 

( M - 1 )  ( M - 1 )  

which shows that 

Now it is an  immediate consequence of proposition 3 in [5] that 

is the zero-temperature limit of the entropy. So, if one can prove for some interaction 
that all of its ground-state configurations have the property of being net-ordered in 
the above sense, then the above argument shows that for that model the entropy goes 
to zero with temperature, i.e. the model satisfies the third law of thermodynamics. 
Since Miqkisz proved [ 3 ]  that among short-range lattice models a generic set of 
interactions are net-ordered, it follows that among short-range lattice gas models the 
third law is satisfied generically. Perhaps of more importance, this indicates that the 
property of configurations that they be net-ordered is technicadly a very useful property. 

We summarise our results in the following theorem. 

Theorem. (a) If the ground-state configurations of an  interaction are all net-ordered, 
for that model entropy goes to zero with temperature. (b) Among short-range lattice 
gas models the ground-state configurations of generic interactions are all net-ordered 
and  therefore the third law of thermodynamics holds generically. 
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